
History Review New features Better DDL Better Performance

Partitioning Improvements in PostgreSQL 11

Álvaro Herrera
alvherre@2ndQuadrant.com

2ndQuadrant Ltd.
http://www.2ndQuadrant.com/

PGConf Brasil 2018
http://pgconf.com.br/

http://www.2ndquadrant.com/
mailto:alvherre@2ndQuadrant.com
http://www.2ndQuadrant.com/
http://pgconf.com.br/

History Review New features Better DDL Better Performance

Before Declarative Partitioning

• Early “partitioning” introduced in PostgreSQL 8.1 (2005)
• Heavily based on relation inheritance (from OOP)
• Novelty was “constraint exclusion”

• a sort of “theorem prover” using queries and constraints

• Huge advance at the time

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Example DDL

CREATE TABLE measurement (

city_id int not null, logdate date not null,

peaktemp int, unitsales int);

CREATE TABLE measurement_y2006m02 (

CHECK (logdate >= DATE '2006-02-01' AND

logdate < DATE '2006-03-01')

) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (

CHECK (logdate >= DATE '2006-03-01' AND

logdate < DATE '2006-04-01')

) INHERITS (measurement);

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Example DDL (2)

CREATE OR REPLACE FUNCTION measurement_insert_trigger()

RETURNS TRIGGER AS $$

BEGIN

IF (NEW.logdate >= DATE '2006-02-01' AND

NEW.logdate < DATE '2006-03-01') THEN

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2006-03-01' AND

NEW.logdate < DATE '2006-04-01') THEN

INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (...)

...

ELSE

INSERT INTO measurement_default VALUES (NEW.*);

END IF;

RETURN NULL;

END;

$$;

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Declarative Partitioning

• Introduced in PostgreSQL 10
• Easier to manage
• Better tuple routing performance

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Declarative Partitioning DDL (Postgres 10)

CREATE TABLE orders (

order_id BIGINT, order_date TIMESTAMP WITH TIME ZONE, ...

) PARTITION BY RANGE (order_date);

CREATE TABLE orders_2018_08 -- create empty partition

PARTITION OF clientes FOR VALUES

FROM ('2018-08-01') TO ('2018-08-31');

-- pre-filled table attached after the fact

ALTER TABLE orders

ATTACH PARTITION orders_2018_01

FOR VALUES FROM ('2018-01-01') TO ('2018-01-31');

-- No code needed for tuple routing!!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Decl. Partitioning: limitations

• Only LIST and RANGE

• No default partition
• Still using constraint exclusion
• Most DDL must be applied per partition

• indexes, triggers
• constraints (incl. foreign keys)

• some features don’t work
• ON CONFLICT DO UPDATE
• UPDATE across partitions

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Prelude to PostgreSQL 11

• Diversion: Change in version numbering
• Everybody now must know that versioning changed
• Must attend conferences every year!!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Partitioning in PostgreSQL 11

• New partitioning features
• Better support for DDL commands
• Performance optimizations

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New Partitioning Features

• DEFAULT partition
• Row migration on UPDATE

• Hash partitioning
• INSERT ON CONFLICT DO UPDATE

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: DEFAULT partition

CREATE TABLE orders_def

PARTITION OF orders

FOR VALUES DEFAULT;

• Receives tuples for which there is no other partition
• Range partitioning: The default partition receives NULLs

• Please test!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: DEFAULT partition

CREATE TABLE orders_def

PARTITION OF orders

FOR VALUES DEFAULT;

• Receives tuples for which there is no other partition
• Range partitioning: The default partition receives NULLs
• Please test!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: Row migration on UPDATE

UPDATE orders SET order_date = '2018-08-02'

WHERE order_date = '2018-07-31';

• Ability to move rows from one partition to another
• Hopefully not typical usage
• May have funny corner cases under concurrency

• Please test!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: Row migration on UPDATE

UPDATE orders SET order_date = '2018-08-02'

WHERE order_date = '2018-07-31';

• Ability to move rows from one partition to another
• Hopefully not typical usage
• May have funny corner cases under concurrency
• Please test!

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: hash partitioning

CREATE TABLE clientes (

cliente_id INTEGER, ...

) PARTITION BY HASH (cliente_id);

CREATE TABLE clientes_0 PARTITION OF clientes

FOR VALUES WITH (MODULUS 3, REMAINDER 0);

CREATE TABLE clientes_1 PARTITION OF clientes

FOR VALUES WITH (MODULUS 3, REMAINDER 1);

CREATE TABLE clientes_2 PARTITION OF clientes

FOR VALUES WITH (MODULUS 6, REMAINDER 2);

CREATE TABLE clientes_2 PARTITION OF clientes

FOR VALUES WITH (MODULUS 6, REMAINDER 5);

CREATE TABLE clientes_2 PARTITION OF clientes

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New subfeature: Re-hashing (2)

CREATE TABLE clientes_00 (LIKE clientes);

CREATE TABLE clientes_01 (LIKE clientes);

WITH moved AS (

DELETE FROM clientes_0

WHERE satisfies_hash_partition('clientes'::regclass, 6, 0,

cliente_id)

RETURNING *)

INSERT INTO clientes_00 SELECT * FROM moved;

WITH moved AS (

DELETE FROM clientes_0

WHERE satisfies_hash_partition('clientes'::regclass, 6, 3,

cliente_id)

RETURNING *)

INSERT INTO clientes_01 SELECT * FROM moved;

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New subfeature: Re-hashing (2)

ALTER TABLE clientes DETACH PARTITION clientes_0;

ALTER TABLE clientes ATTACH PARTITION clientes_00

FOR VALUES WITH (MODULUS 6, REMAINDER 0);

ALTER TABLE clientes ATTACH PARTITION clientes_01

FOR VALUES WITH (MODULUS 6, REMAINDER 3);

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

New feature: ON CONFLICT DO UPDATE

CREATE TABLE order_items (

order_id INTEGER NOT NULL,

item_id INTEGER NOT NULL,

quantity INTEGER NOT NULL CHECK (quantity > 0),

UNIQUE (order_id, item_id)

) PARTITION BY HASH (order_id);

-- create partitions

INSERT INTO order_items VALUES (888, 12345, 5)

ON CONFLICT (order_id, item_id) DO UPDATE

SET quantity = order_items.quantity + EXCLUDED.quantity;

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL support

• CREATE INDEX
• UNIQUE & PRIMARY KEY constraints
• FOREIGN KEY constraints
• Row-level triggers

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: CREATE INDEX

• CREATE INDEX applies to parent table
• Cascades to each partition

• If identical index already exists, it is attached
• If not, a new index is created

• Clones the index when new partitions are added
• or attaches an existing index

• Index can be created ON ONLY parent table
• No cascading occurs
• Partition indexes can be attached later

• ALTER INDEX ATTACH PARTITION

• Once all partition indexes are attached, parent index
becomes valid

• This is what pg_dump does

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: CREATE INDEX

• CREATE INDEX applies to parent table
• Cascades to each partition

• If identical index already exists, it is attached
• If not, a new index is created

• Clones the index when new partitions are added
• or attaches an existing index

• Index can be created ON ONLY parent table
• No cascading occurs
• Partition indexes can be attached later

• ALTER INDEX ATTACH PARTITION

• Once all partition indexes are attached, parent index
becomes valid

• This is what pg_dump does

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: CREATE INDEX

• CREATE INDEX applies to parent table
• Cascades to each partition

• If identical index already exists, it is attached
• If not, a new index is created

• Clones the index when new partitions are added
• or attaches an existing index

• Index can be created ON ONLY parent table
• No cascading occurs
• Partition indexes can be attached later

• ALTER INDEX ATTACH PARTITION

• Once all partition indexes are attached, parent index
becomes valid

• This is what pg_dump does

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: UNIQUE constraints

• UNIQUE constraints are just indexes that are UNIQUE
• ... well, add a pg_constraint row

• So we clone that too

• Limitation: all columns in partition key must appear in
constraint

• Local unicity ensures global unicity
• To do better requires global indexes or other tricks

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: UNIQUE constraints

• UNIQUE constraints are just indexes that are UNIQUE
• ... well, add a pg_constraint row

• So we clone that too

• Limitation: all columns in partition key must appear in
constraint

• Local unicity ensures global unicity
• To do better requires global indexes or other tricks

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: FOREIGN KEY constraints

• FKs in partitioned tables referencing non-partitioned tables
• Doing the other way around requires more effort :-(
• New partitions clone the constraints/trigger
• User doesn’t need to do anything

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Better DDL: Row-level triggers

• AFTER triggers FOR EACH ROW on partitioned table
• Cloned to each partition on creation

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Performance: Faster pruning

• Constraint exclusion is slow and limited
• Partition pruning is completely new, more advanced tech
• It produces a “pruning program“ from query WHERE

clause and partition bounds
• Initially, pruning applies at plan time

• just like constraint exclusion

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Pruning example

EXPLAIN (ANALYZE, COSTS off)

SELECT * FROM clientes

WHERE cliente_id = 1234;

QUERY PLAN

--

Append (actual time=0.054..2.787 rows=1 loops=1)

-> Seq Scan on clientes_2 (actual time=0.052..2.785 rows=1 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12570

Planning Time: 0.292 ms

Execution Time: 2.822 ms

(6 filas)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

No pruning example

SET enable_partition_pruning TO off;

EXPLAIN (ANALYZE, COSTS off)

SELECT * FROM clientes

WHERE cliente_id = 1234;

QUERY PLAN

Append (actual time=6.658..10.549 rows=1 loops=1)

-> Seq Scan on clientes_1 (actual time=4.724..4.724 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 24978

-> Seq Scan on clientes_00 (actual time=1.914..1.914 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12644

-> Seq Scan on clientes_2 (actual time=0.017..1.021 rows=1 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12570

-> Seq Scan on clientes_3 (actual time=0.746..0.746 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12448

-> Seq Scan on clientes_01 (actual time=0.648..0.648 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12482

-> Seq Scan on clientes_4 (actual time=0.774..0.774 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12400

-> Seq Scan on clientes_5 (actual time=0.717..0.717 rows=0 loops=1)

Filter: (cliente_id = 1234)

Rows Removed by Filter: 12477

Planning Time: 0.375 ms

Execution Time: 10.603 ms

(24 filas)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Performance: Runtime pruning

• Partition pruning can be applied at execution time too
• Many queries can be optimized better at “run” time
• Two chances for runtime pruning

• When bound parameters are given values (bind time)
• Values obtained from other execution nodes

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Runtime pruning example

explain (analyze, costs off, summary off, timing off)

execute ab_q1 (2, 2, 3);

QUERY PLAN

Append (actual rows=0 loops=1)

Subplans Removed: 6

-> Seq Scan on ab_a2_b1 (actual rows=0 loops=1)

Filter: ((a >= $1) AND (a <= $2) AND (b <= $3))

-> Seq Scan on ab_a2_b2 (actual rows=0 loops=1)

Filter: ((a >= $1) AND (a <= $2) AND (b <= $3))

-> Seq Scan on ab_a2_b3 (actual rows=0 loops=1)

Filter: ((a >= $1) AND (a <= $2) AND (b <= $3))

(8 rows)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Another runtime pruning example

explain (analyze, costs off, summary off, timing off)

select * from tbl1 join tprt on tbl1.col1 < tprt.col1;

QUERY PLAN

--

Nested Loop (actual rows=1 loops=1)

-> Seq Scan on tbl1 (actual rows=1 loops=1)

-> Append (actual rows=1 loops=1)

-> Index Scan using tprt1_idx on tprt_1 (never executed)

Index Cond: (tbl1.col1 < col1)

-> Index Scan using tprt2_idx on tprt_2 (never executed)

Index Cond: (tbl1.col1 < col1)

-> Index Scan using tprt5_idx on tprt_5 (never executed)

Index Cond: (tbl1.col1 < col1)

-> Index Scan using tprt6_idx on tprt_6 (actual rows=1 loops=1)

Index Cond: (tbl1.col1 < col1)

(15 rows)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Performance: Partitionwise joins

• Applies to joins between partitioned tables
• Normal case: join produces cartesian product of partitions
• Partitionwise join: join occurs “per partition”

• If partition bounds are identical
• only joins those partitions with matching bounds

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Partitionwise join example

CREATE TABLE orders (order_id int, client_id int)

PARTITION BY RANGE (order_id);

CREATE TABLE orders_1000 PARTITION OF orders

for values FROM (1) TO (1000);

CREATE TABLE orders_2000 PARTITION OF orders

FOR VALUES FROM (1000) TO (2000);

CREATE TABLE order_items (order_id int, item_id int)

PARTITION BY RANGE (order_id);

CREATE TABLE order_items_1000 PARTITION OF order_items

for VALUES FROM (1) TO (1000);

CREATE TABLE order_items_2000 PARTITION OF order_items

FOR VALUES FROM (1000) TO (2000);

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Partitionwise join example

SET enable_partitionwise_join TO off;

EXPLAIN (COSTS OFF) SELECT * FROM orders JOIN order_items

USING (order_id) WHERE customer_id = 64;

QUERY PLAN

Hash Join

Hash Cond: (order_items_1000.order_id = orders_1000.order_id)

-> Append

-> Seq Scan on order_items_1000

-> Seq Scan on order_items_2000

-> Hash

-> Append

-> Bitmap Heap Scan on orders_1000

Recheck Cond: (customer_id = 64)

-> Bitmap Index Scan on orders_1000_customer_id_idx

Index Cond: (customer_id = 64)

-> Seq Scan on orders_2000

Filter: (customer_id = 64)

(13 filas)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Partitionwise join example

EXPLAIN (COSTS OFF) SELECT * FROM orders JOIN order_items

USING (order_id) WHERE customer_id = 64;

QUERY PLAN

Append

-> Hash Join

Hash Cond: (order_items_1000.order_id = orders_1000.order_id)

-> Seq Scan on order_items_1000

-> Hash

-> Bitmap Heap Scan on orders_1000

Recheck Cond: (customer_id = 64)

-> Bitmap Index Scan on orders_1000_customer_id_idx

Index Cond: (customer_id = 64)

-> Nested Loop

-> Seq Scan on orders_2000

Filter: (customer_id = 64)

-> Index Scan using order_items_2000_order_id_idx on order_items_2000

Index Cond: (order_id = orders_2000.order_id)

http://www.2ndquadrant.com/

History Review New features Better DDL Better Performance

Thanks!

Questions?

http://www.2ndquadrant.com/

	History Review
	Prehistory
	Declarative
	Limitations
	Versioning

	New features
	DEFAULT partition
	row migration
	Hash partitioning
	ON CONFLICT

	Better DDL
	CREATE INDEX
	UNIQUE / PKs
	Foreign Keys
	Triggers

	Better Performance
	Faster pruning
	Runtime pruning
	Partitionwise joins

